245 research outputs found

    Oxidative Polymerization of Dopamine: A High-Definition Multifunctional Coatings for Electrospun Nanofibers - An Overview

    Get PDF
    The invention that catecholamines undergo oxidative polymerization under alkaline conditions and form adhesive nanocoatings on wide variety of substrates has ushered their potential utility in engineering and biomedical applications. The oxidative polymerization of catecholamines can be triggered by light, chemical and physical methods, thus representing one of the widely explored surface coating methods. The overall objectives of this chapter are to compile the various methods of accomplishing surface coatings and compare the structural diversity of catecholamines. The progress achieved so far on polydopamine (pDA) coatings on electrospun polymers will be discussed. Finally, we will summarize the research efforts on catecholamine coatings for biomedical applications as well as their potential as a high definition coating method

    Ultrasound Imaging Morphology is Associated with Biological Behavior in Invasive Ductal Carcinoma of the Breast

    Get PDF
    Objectives: Ultrasound (US) is commonly used for diagnostic evaluation of breast lesions. The objective of this study was to investigate the association between US imaging morphology from routine radiologists\u27 interpretation and biological behavior such as receptor status and tumor grade determined from histopathology in invasive ductal carcinoma (IDC). Material and Methods: This retrospective study included 453 patients with pathology-verified diagnosis of IDC who had undergone US imaging and had surgery over a 5-year period. US and surgical pathology reports were reviewed and compiled. Correlation analyses and age-adjusted multivariable models were used to determine the association between US imaging morphology and receptor status, tumor grade, and germ line mutation of the breast cancer genes (BRCA1 and BRCA2). The odds ratio (OR), area under receiver operating characteristic curve (AUC), and 95% confidence intervals (CI) were obtained. Results: The likelihood for high-grade cancer increased with size (OR: 1.066; CI: 1.042-1.091) and hypo-echogenicity (OR: 2.044; CI: 1.337-3.126), and decreased with angular or spiculated margins (OR: 0.605; CI: 0.393-0.931) and posterior acoustic shadowing (OR: 0.352; CI: 0.238-0.523). These features achieved an AUC of 0.799 (CI: 0.752-0.845) for predicting high-grade tumors. The likelihood for Estrogen Receptor-positive tumors increased with posterior acoustic shadowing (OR: 3.818; CI: 2.206-6.607), angulated or spiculated margins (OR: 2.596; CI: 1.159-5.815) and decreased with US measured tumor size (OR: 0.959; CI: 0.933-0.986) and hypoechoic features (OR: 0.399; CI: 0.198- 0.801), and achieved an AUC of 0.787 (CI: 0.733-0.841). The likelihood for Progesterone Receptor-positive tumors increased with posterior acoustic shadowing (OR: 2.732; CI: 1.744-4.28) and angulated or spiculated margins (OR: 2.618; CI: 1.412-4.852), and decreased with US measured tumor size (OR: 0.961; CI: 0.937-0.985) and hypoechoic features (OR: 0.571; CI: 0.335-0.975), and achieved an AUC of 0.739 (CI: 0.689-0.790). The likelihood for Human epidermal growth factor receptor 2-positive tumors increased with heterogeneous echo texture (OR: 2.141; CI: 1.17- 3.919) and decreased with angulated or spiculated margins (OR: 0.408; CI: 0.177-0.944), and was marginally associated with hypoechoic features (OR: 2.101; CI: 0.98-4.505) and circumscribed margins (OR: 4.225; CI: 0.919-19.4). The model with the aforementioned four US morphological features and achieved an AUC of 0.686 (CI: 0.614-0.758). The likelihood for triple-negative breast cancers increased with hypo-echogenicity (OR: 2.671; CI: 1.249-5.712) and decreased with posterior acoustic shadowing (OR: 0.287; CI: 0.161-0.513), and achieved an AUC of 0.739 (CI: 0.671- 0.806). No statistical association was observed between US imaging morphology and BRCA mutation. Conclusion: In this study of over 450 IDCs, significant statistical associations between tumor grade and receptor status with US imaging morphology were observed and could serve as a surrogate imaging marker for the biological behavior of the tumor

    Vanadium-based polyoxometalate as new material for sodium-ion battery anodes

    Get PDF
    Affordable energy storage is crucial for a variety of technologies. One option is sodium-ion batteries (NIBs) for which, however, suitable anode materials are still a problem. We report on the application of a promising new class of materials, polyoxometalates (POMs), as an anode in NIBs. Specifically, Na6[V10O28]·16H2O is being synthesized and characterized. Galvanostatic tests reveal a reversible capacity of approximately 276 mA h g−1 with an average discharge potential of 0.4 V vs. Na/Na+, as well as a high cycling stability. The underlying mechanism is rationalized to be an insertion of Na+ in between the [V10O28]6− anions rather than an intercalation into a crystal structure; the accompanying reduction of V+V to V+IV is confirmed by X-ray Photoelectron Spectroscopy. Finally, a working full-cell set-up is presented with the POM as the anode, substantiating the claim that Na6[V10O28]·16H2O is a promising option for future high-performing sodium-ion batteries

    Grid-Connected Energy Storage Systems: State-of-the-Art and Emerging Technologies

    Get PDF
    High penetration of renewable energy resources in the power system results in various new challenges for power system operators. One of the promising solutions to sustain the quality and reliability of the power system is the integration of energy storage systems (ESSs). This article investigates the current and emerging trends and technologies for grid-connected ESSs. Different technologies of ESSs categorized as mechanical, electrical, electrochemical, chemical, and thermal are briefly explained. Especially, a detailed review of battery ESSs (BESSs) is provided as they are attracting much attention owing, in part, to the ongoing electrification of transportation. Then, the services that grid-connected ESSs provide to the grid are discussed. Grid connection of the BESSs requires power electronic converters. Therefore, a survey of popular power converter topologies, including transformer-based, transformerless with distributed or common dc-link, and hybrid systems, along with some discussions for implementing advanced grid support functionalities in the BESS control, is presented. Furthermore, the requirements of new standards and grid codes for grid-connected BESSs are reviewed for several countries around the globe. Finally, emerging technologies, including flexible power control of photovoltaic systems, hydrogen, and second-life batteries from electric vehicles, are discussed in this article.This work was supported in part by the Office of Naval Research Global under Grant N62909-19-1-2081, in part by the National Research Foundation of Singapore Investigatorship under Award NRFI2017-08, and in part by the I2001E0069 Industrial Alignment Funding. (Corresponding author: Josep Pou.

    Evidence-based national vaccine policy

    Get PDF
    India has over a century old tradition of development and production of vaccines. The Government rightly adopted self-sufficiency in vaccine production and self-reliance in vaccine technology as its policy objectives in 1986. However, in the absence of a full-fledged vaccine policy, there have been concerns related to demand and supply, manufacture vs. import, role of public and private sectors, choice of vaccines, new and combination vaccines, universal vs. selective vaccination, routine immunization vs. special drives, cost-benefit aspects, regulatory issues, logistics etc. The need for a comprehensive and evidence based vaccine policy that enables informed decisions on all these aspects from the public health point of view brought together doctors, scientists, policy analysts, lawyers and civil society representatives to formulate this policy paper for the consideration of the Government. This paper evolved out of the first ever ICMR-NISTADS national brainstorming workshop on vaccine policy held during 4-5 June, 2009 in New Delhi, and subsequent discussions over email for several weeks, before being adopted unanimously in the present form

    A multi-country test of brief reappraisal interventions on emotions during the COVID-19 pandemic.

    Get PDF
    The COVID-19 pandemic has increased negative emotions and decreased positive emotions globally. Left unchecked, these emotional changes might have a wide array of adverse impacts. To reduce negative emotions and increase positive emotions, we tested the effectiveness of reappraisal, an emotion-regulation strategy that modifies how one thinks about a situation. Participants from 87 countries and regions (n = 21,644) were randomly assigned to one of two brief reappraisal interventions (reconstrual or repurposing) or one of two control conditions (active or passive). Results revealed that both reappraisal interventions (vesus both control conditions) consistently reduced negative emotions and increased positive emotions across different measures. Reconstrual and repurposing interventions had similar effects. Importantly, planned exploratory analyses indicated that reappraisal interventions did not reduce intentions to practice preventive health behaviours. The findings demonstrate the viability of creating scalable, low-cost interventions for use around the world

    1D hollow α-Fe2O3 electrospun nanofibers as high performance anode material for lithium ion batteries

    No full text
    Hollow-structured α-Fe2O3 nanofibers were successfully synthesized by a simple electrospinning technique using iron acetylacetonate (Fe(acac3)) and polyvinylpyrrolidone (PVP) precursor. Fe (acac)3–PVP composite fibers were calcined at high temperature to form an interconnected 1D hollow-structure of α-Fe2O3 nanofibers. Thermogravimetric analysis (TGA), X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and Brunauer–Emmett–Teller (BET) were employed to characterize α-Fe2O3 hollow fibers. Based on the characterization results, a formation mechanism for electrospun α-Fe2O3 hollow fibers is proposed. Electrochemical measurements showed that the hollow-structure of α-Fe2O3 nanofibers played an important role in improving the electrode cycle stability and rate capability in lithium ion batteries. The α-Fe2O3 hollow fiber anodes exhibit a high reversible capacity of 1293 mA h g−1 at a current density of 60 mA g−1 (0.06 C) with excellent cycle stability and rate capability. Based on our study this high performance is attributed to the interconnected hollow-structure of large aspect ratio α-Fe2O3 nanofibers, which makes them a potential candidate for lithium ion batteries

    Lithium recovery from spent lithium-ion batteries leachate by chelating agents facilitated electrodialysis

    No full text
    Recovering lithium from industrial spent lithium-ion batteries (LIBs) leachate with an electrodialysis approach is still a challenge due to the complexity of the leachate, though some studies have been done on simplified synthetic LIBs solutions. This study successfully separates lithium ions from industrial spent LIBs leachate using an electrodialyzer equipped with a bipolar membrane module. Common chelating agents, including ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), L-glutamic acid (GLDA), and hydroxyethylethylenediaminetriacetic acid (HEDTA) are used to facilitate the recovery of lithium by forming complexes with other metal ions in the leachate. The effect of different chelating agents, their dosages, and varied fluid dynamics on lithium recovery rates are investigated. This approach has been proven to be suitable for lithium recovery from different LIBs industrial leachates including lithium cobalt (LCO), nickel rich (Ni-rich), and nickel manganese cobalt (NMC) spent LIBs black mass in this work. The highest purity and recovery rate of lithium under optimum conditions could achieve up to 99.43 % and 63.91 % respectively.National Environmental Agency (NEA)National Research Foundation (NRF)Submitted/Accepted versionThis research/project is supported by the National Research Foundation, Singapore, and National Environment Agency, Singapore, under its Closing the Waste Loop Funding Initiative (SCARCE Phase 2 Award No. CTRL-2023-1D-01).
    corecore